List of research papers written by our customers using our GaN epitaxial wafers

NTT Advanced Technology Corporation

NTT Atsugi R&D Center, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0124, Japan

NTT Advanced Technology Corporation (NTT-AT) has been providing gallium nitride (GaN) epitaxial wafers for academic and industrial R&D fields. Nitride semiconductors have capability of high output, high withstand voltage, high frequency, and low loss operation, and its power electric devices are expected to support the low-carbon society. In this document, we present customers' publications from 2020 to 2024 for your references. You can also find our product detail from the link below; https://keytech.ntt-at.co.jp/en/epi/prd_1002.html

- [1] E. Palmese et al., "Enhancement-Mode AlInN/GaN High-Electron-Mobility Transistors Enabled by Thermally Oxidized Gates," IEEE Trans. Electron Devices (2024)
- [2] H. Okada et al., "Electrical and X-Ray Photoelectron Spectroscopy Studies of Ti/Al/Ti/Au Ohmic Contacts to AlGaN/GaN," IEICE Trans. Electron. (2024)
- [3] I. Zdru et al., "Interaction of acoustic waves with spin waves using a GHz operating GaN/Si SAW device with a Ni/NiFeSi layer between its IDTs," <u>IEEE Trans. Ultrason. Ferroelect. Freq. Control.</u> (2024)
- [4] Y. Ando et al., "Dependence of Electrical Characteristics on Epitaxial Layer Structure of AlGaN/GaN HEMTs Fabricated on Freestanding GaN Substrates," <u>IEEE Trans. Electron</u> <u>Devices (2022)</u>
- [5] M. Geilen et al., "Fully resonant magneto-elastic spin-wave excitation by surface acoustic waves under conservation of energy and linear momentum," <u>Appl. Phys. Lett. (2022)</u>
- [6] F. Bayram et al., "Mechanical memory operations in piezotransistive GaN microcantilevers using Au nanoparticle-enhanced photoacoustic excitation," <u>Microsyst. Nanoeng. (2022)</u>
- [7] L. Hubbard, "Accelerated beta radiation aging of interlayer titanium nitride in gallium nitride contacts," <u>MRS Commun. (2022)</u>
- [8] Y. Jiang et al., "Microscopic formation mechanism of Si/Tl₅Al₁/TiN ohmic contact on nonrecessed i-InAlN/GaN heterostructures with ultra-low resistance," <u>Appl. Phys. Lett. (2022)</u>
- B. Uppalapati et al., "An AlGaN/GaN Dual Channel Triangular Microcantilever Based UV Detector," <u>ACS Photonics (2022)</u>
- [10] D. Vasilache et al., "Development of high frequency SAW devices devoted for pressure sensing," IEEE Proc. (2022)
- [11] F. Du et al., "The Atomic Layer Etching Technique with Surface Treatment Function for InAlN/GaN Heterostructure," <u>Crystals (2022)</u>
- [12] Y. Yin and K. B. Lee, "High-Performance Enhancement-Mode p-Channel GaN MISFETs With Steep Subthreshold Swing," <u>IEEE Electron Device Lett. (2022)</u>
- [13] Y. Yoshiya et al., "Impact of selective thermal etching in mixed H₂/NH₃ atmosphere on crystal quality of AlGaN/GaN heterostructures," Jpn. J. Appl. Phys. (2021)

- [14] S. R. Eisner et al., "Extended Exposure of Gallium Nitride Heterostructure Devices to a Simulated Venus Environment," <u>Proc. IEEE Aerosp. Conf. (2021)</u>
- [15] A. B. Serban et al., "Studies of Defect Structure in Epitaxial AlN/GaN Films Grown on (111) 3C-Si," <u>Nanomater. (2021)</u>
- [16] G. Boldeiu et al., "Investigation of Temperature Sensing Capabilities of GaN/SiC and GaN/Sapphire Surface Acoustic Wave Devices," <u>IEEE Access (2021)</u>
- [17] F. Bayram et atl., Voltage triggered near-infrared light modulation using VO₂ thin film," <u>Opt.</u> <u>Express (2021)</u>
- [18] Y. Gu et al., "Temperature-Dependent Dynamic Degradation of Carbon-Doped GaN HEMTs," IEEE Trans. Electron Devices (2021)
- [19] V. S. Charan et al., "Scandium-Based Ohmic Contacts to InAlN/GaN Heterostructures on Silicon," <u>IEEE Electron Device Lett. (2021)</u>
- [20] C. Romanitan et al., "Effect of the lattice mismatch on threading dislocations in heteroepitaxial GaN layers revealed by X-ray diffraction," J. Alloys Compd. (2021)
- [21] H. Guo et al., "Output Phase and Amplitude Analysis of GaN-Based HEMT at Cryogenic Temperatures," <u>IEEE Microw. Wirel. Compon. Lett. (2021)</u>
- [22] T. Izsák et al., "Influence of SiON interlayer on the diamond/GaN heterostructures studied by Raman and SIMS measurements," <u>Mater. Sci. Eng. B (2021)</u>
- [23] H. I. Yang et al., "Epitaxial Molybdenum Disulfide/Gallium Nitride Junctions: Low-Knee-Voltage Schottky-Diode Behavior at Optimized Interfaces," <u>ACS Appl. Mater. Interfaces (2021)</u>
- [24] J. -J. Jian et al., "Investigation of Multi-Mesa-Channel-Structured AlGaN/GaN MOSHEMTs with SiO₂ Gate Oxide Layer," <u>Coatings (2021)</u>
- [25] X. Yang et al., "Low-Power pH Sensor Based on Narrow Channel Open-Gated Al_{0.25}Ga_{0.75}N/GaN HEMT and Package Integrated Polydimethylsiloxane Microchannels," <u>Materials (2020)</u>
- [26] F. Azam et al., "Engineering a Unified Dielectric Solution for AlGaN/GaN MOS-HFET Gate and Access Regions," <u>IEEE Trans. Electron Devices (2020)</u>
- [27] H. S. Alpert et al., "Sensitivity of 2DEG-based Hall-effect sensors at high temperatures," <u>Rev.</u> <u>Sci. Instrum (2020)</u>
- [28] D. Khan et al., "H₂ Detection Using Plasmonically Generated Surface Photoacoustic Waves in Pd Nanoparticle-Deposited GaN Microcantilevers," <u>ACS Sens. (2020)</u>
- [29] D. Khan et al., "Photoacoustic Detection of H₂ and NH₃ Using Plasmonic Signal Enhancement in GaN Microcantilevers," <u>Micromachines (2020)</u>
- [30] H. Okamura, "Growth of double-barrier β-(AlGa)₂O₃/Ga₂O₃ structure and heavily Sn-doped Ga₂O₃ layers using molecular-beam epitaxy," Jpn. J. Appl. Phys. (2020)
- [31] S. -W. Huang et al., "Improving the GaN-on-GaN Schottky Barrier Diode by ALD-AIN Tunneling Barrier Layer and Multi-Fins Structure," <u>IEEE Trans. Nanotechnol. (2020)</u>
- [32] N. -T. Do et al., "An Analytical Model for AlGaN/GaN MOS-HEMT for High Power Applications," <u>Springer Proc. Mater. (2020)</u>
- [33] M. Geilen et al., "Interference of co-propagating Rayleigh and Sezawa waves observed with micro-focused Brillouin light scattering spectroscopy," <u>Appl. Phys. Lett. (2020)</u>